
Deep Learning

Author: Wenxiao Yang

Institute: Department of Mathematics, University of Illinois at Urbana-Champaign

Date: 2022

All models are wrong, but some are useful.

Contents

Chapter 1 Learning Basics 1

1.1 Parameters and Hyperparameters . 1

1.2 Neural Network: Back Propagation Algorithm . 1

1.2.1 Activations . 2

1.2.2 Multilayer Neural Network . 3

1.2.3 A Simple Example of Back Propagation Algorithm 4

1.2.4 Back Propagation Algorithm . 5

1.2.5 Other Methods . 7

1.3 Perceptron Algorithm . 7

1.3.1 General Idea . 7

1.3.2 Algorithm . 8

1.3.3 Limitations . 9

1.4 ADAptive LInear NEuron (ADALINE) . 9

1.4.1 General Idea . 9

1.4.2 Widrow-Hoff Delta Rule . 10

1.5 Logistic Regression (Binary-class Output) . 10

1.5.1 Generative and Discriminative Classifiers . 10

1.5.2 Sigmoid function . 11

1.5.3 Cross-entropy Loss Function . 11

1.5.4 Algorithm . 12

1.6 Softmax Regression (Multi-class Output) . 12

1.6.1 Multi-Class Classification and Multi-Label Classification 12

1.6.2 One-hot Encoding . 13

1.6.3 Softmax function . 14

1.6.4 Categorical Cross-entropy Loss Function . 15

1.7 Deep Feedforward Networks . 15

1.7.1 Definition . 15

1.7.2 Universal Approximation Theorem . 15

1.8 Mini-batch Optimization . 16

CONTENTS

1.8.1 Stochastic Gradient Descent (SGD) and Batch Gradient Descent (BGD) 16

1.8.2 Mini-Batch Gradient Descent (MBGD) . 18

1.9 Weight Initialization . 18

1.9.1 Xavier Initialization . 18

1.9.2 He Activation . 19

Chapter 2 Adaptive Optimization 20

2.1 Exponentially Weighted Moving Averages . 20

2.2 Adaptive Learning Rates . 20

2.2.1 Momentum . 20

2.2.2 Root Mean Square Propagation (RMSProp) . 21

2.2.3 Adaptive Moment Estimation (ADAM) . 21

Chapter 3 Convolutional Neural Network (CNN) 23

3.1 Convolution and Cross-correlation . 23

3.2 Padding (cover the border) . 24

3.3 Stride . 24

3.4 Other Layer Types . 25

3.4.1 Pooling . 25

3.4.2 Unpooling . 25

3.5 3D Convolution . 25

Chapter 4 Generative model 27

4.1 Autoencoders . 27

4.1.1 Basics . 27

4.1.2 PCA and Autoencoders . 28

4.1.3 Transposed Convolutions (upscale method) . 29

ii

Chapter 1 Learning Basics

1.1 Parameters and Hyperparameters

Definition 1.1 (Parameter)

♣Parameters are values learned by the model given the data.

e.g. β,W, b, θ.

Definition 1.2 (Hyperparameter)

♣Hyperparameters are values supplied to tune the model and cannot be learned from data.

e.g. Number of Hidden Layers, Neurons, and Epochs to Train. Learning Rate, and Batch Size.

1.2 Neural Network: Back Propagation Algorithm

Neural Network

Figure 1.1: Simple Neural Network

Given a vector input x, we need to find the best estimator ŷ which minimizes lost function. In the figure that has

only one layer and one pathway, we find the parameter (ω, b) to form an input ωTx+ b to neuron σ (activation

function). Then, the final output (estimator) of the network is ŷ = σ(ωTx+ b).

1.2 Neural Network: Back Propagation Algorithm

1.2.1 Activations

Definition 1.3

♣

Activation functions are element-wise gates for letting information propagate to future layers either trans-

formed with non-linearities or left as-is.

Example of activation function:

Figure 1.2: Activations

(1) Identity:

identity(x) = I(x) = x

(2) Binary:

binary(x) = step(x) =

1, x ≥ 0

0, x < 0

(3) Sigmoid:

σ(x) =
1

1 + e−x

σ(−x) = 1− σ(x);
dσ(x)

dx
= σ(x) · (1− σ(x))

2

1.2 Neural Network: Back Propagation Algorithm

∂σ(x⃗)

∂x⃗
=

σ(x1)(1− σ(x1)) · · · 0

...

0 · · · σ(xn)(1− σ(xn))

 = diag(σ(x⃗) · (1− σ(x⃗)))

(4) TanH:

tanh(x) =
ex − e−x

ex + e−x

(TanH is a rescaled sigmoid)

tanh(x) =
e2x − 1

e2x + 1
= 1− 2σ(−2x) = 2σ(2x)− 1

(5) ReLU:

g(x) = max(0, x)

(6) Leaky ReLU:

g(x) = max(0.1x, x)

(7) Softmax: Sj(x⃗) =
exj∑n
i=1 e

xi
,

S(x⃗) =

[
ex1∑n
i=1 e

xi
,

ex2∑n
i=1 e

xi
, · · · , exn∑n

i=1 e
xi

]T
∂Sj(x⃗)

∂xj
= Sj(x⃗)[1− Sj(x⃗)]

1.2.2 Multilayer Neural Network

Figure 1.3: Multilayer Neural Network

• Number of neurons in each layer can be different.

• All weights on edge connecting layersm−1 andm is matrixW (m), withw(m)
ij being theweight connecting

output j of layer m− 1 with neuron i of layer m.

3

1.2 Neural Network: Back Propagation Algorithm

• Input to network is vector x; output of layer m is vector y(m)

y
(1)
i = σ(x

(1)
i), with x

(1)
i =

∑
j

w
(1)
ij xj + b

(1)
i

y(1) = σ(x(1)), with x(1) = W (1)x+ b(1)

y(2) = σ(x(2)), with x(2) = W (2)y(1) + b(2)

...

y(M) = σ(x(M)), with x(M) = W (M)y(M−1) + b(M)

We want to find the weights W (1), · · · ,W (M), b(1), · · · , b(M) so that the output of last layer

ŷ = y(M) ≈ f∗(x) = y

f∗(x) is the unknown thing we need to predict.

We use labelled training data, i.e.

(x[1], y[1]), (x[2], y[2]), · · · (x[N], y[N])

Minimize the ”empirical” loss on training data.

J =
N∑
i=1

L(y[i], ŷ[i])

where ȳ[i] is the output of NN whose input is x[i].

• L is the function of W (1), · · · ,W (M), b(1), · · · , b(M) to measure the loss. e.g. the square loss

L(y, ŷ) = (y − ŷ)2

• We wish to minimize J using a gradient descent procedure.

• To compute gradient we need:
∂L

∂w
(l)
ij

for each l, i, j;
∂L

∂b
(l)
i

for each l, i.

1.2.3 A Simple Example of Back Propagation Algorithm

We can consider a simple example (one layer, two pathways)

W (1) = [w
[1]
1,1, w

[1]
2,1]

T , b(1) = [0, 0]T , σ1(x) = x.

W (2) = [w
[2]
1,1, w

[2]
1,2], b(2) = 0, σ2(x) = x.

[a
[1]
1 , a

[1]
2]T = σ1(W

(1)x1 + b(1)) = [w
[1]
1,1x1, w

[1]
2,1x1]

T

ŷ = σ2(W
(2)[a

[1]
1 , a

[1]
2]T + b(2)) = (w

[1]
1,1w

[2]
1,1 + w

[1]
2,1w

[2]
1,2)x1

4

1.2 Neural Network: Back Propagation Algorithm

Figure 1.4: Two Independent Pathways

∂J(ŷ)

∂w
[1]
2,1

=
∂J(ŷ)

∂ŷ
· ŷ

∂a
[1]
2

· a
[1]
2

∂w
[1]
2,1

1.2.4 Back Propagation Algorithm

Recall y(m)
i = σ(x

(m)
i), x(m)

i =
∑

j w
(m)
ij y

(m−1)
j + b

(m)
i

∂L

∂w
(m)
ij

=
∂L

∂y
(m)
i

·
∂y

(m)
i

∂w
(m)
ij

=
∂L

∂y
(m)
i

·
∂y

(m)
i

∂x
(m)
i

·
∂x

(m)
i

∂w
(m)
ij

∂L

∂b
(m)
i

=
∂L

∂y
(m)
i

·
∂y

(m)
i

∂x
(m)
i

·
∂x

(m)
i

∂b
(m)
i

For largeM ,

• ∂L

∂y
(M)
i

is easy to compute.

• ∂y
(M)
i

∂x
(M)
i

=
∂σ(x

(M)
i)

∂x
(M)
i

= σ′(x
(M)
i), (assuming σ differentiable).

• ∂x
(M)
i

∂w
(M)
ij

= y
(M−1)
j

Thus,
∂L

∂w
(M)
ij

=
∂L

∂y
(M)
i

· σ′(x
(M)
i) · y(M−1)

j

Similarly,
∂L

∂b
(M)
i

=
∂L

∂y
(M)
i

·
∂y

(M)
i

∂x
(M)
i

·
∂x

(M)
i

∂b
(M)
i

=
∂L

∂y
(M)
i

· σ′(x
(M)
i)

5

1.2 Neural Network: Back Propagation Algorithm

For 1 ≤ m < M , in this situation ∂L

∂y
(m)
i

is not easy to compute. Note that x(m+1) = W (m+1)y(m) + b(m+1).

∂L

∂y
(m)
i

=
∑
k

∂L

∂x
(m+1)
k

·
∂x

(m+1)
k

∂y
(m)
i

=
∑
k

∂L

∂y
(m+1)
k

·
∂y

(m+1)
k

∂x
(m+1)
k

·
∂x

(m+1)
k

∂y
(m)
i

=
∑
k

∂L

∂y
(m+1)
k

· σ′(x
(m+1)
k) · w(m+1)

ki

Then use this form to compute,

(We can set δ(m) = ∂L

∂y
(m)
i

· σ′(x
(m)
i) to avoid duplicate computation.)

∂L

∂w
(m)
ij

=
∂L

∂y
(m)
i

·
∂y

(m)
i

∂x
(m)
i

·
∂x

(m)
i

∂w
(m)
ij

=
∂L

∂y
(m)
i

· σ′(x
(m)
i) · y(m−1)

j

= δ(m) · y(m−1)
j

Similarly,
∂L

∂b
(m)
i

=
∂L

∂y
(m)
i

·
∂y

(m)
i

∂x
(m)
i

·
∂x

(m)
i

∂b
(m)
i

=
∂L

∂y
(m)
i

· σ′(x
(m)
i)

= δ(m)

Summary

1. Compute ∂L

∂y
(M)
i

.

2. Use
∂L

∂y
(m)
i

=
∑
k

∂L

∂y
(m+1)
k

· σ′(x
(m+1)
k) · w(m+1)

ki

compute ∂L

∂y
(m)
i

for m = 1, 2...,M − 1.

3. Compute
∂L

∂b
(m)
i

=
∂L

∂y
(m)
i

· σ′(x
(m)
i) = δ(m)

for m = 1, 2...,M .

4. Compute
∂L

∂w
(m)
ij

=
∂L

∂y
(m)
i

· σ′(x
(m)
i) · y(m−1)

j = δ(m) · y(m−1)
j

for m = 1, 2...,M .

6

1.3 Perceptron Algorithm

1.2.5 Other Methods

Stochastic Gradient Descent (SGD)

Subgradient Method

1.3 Perceptron Algorithm

Definition 1.4

♣
Binary linear classifiers distinguish between two categories through a linear function of the inputs.

Definition 1.5

♣
Linearly separable refers to a line that can be drawn to perfectly split the two classes.

The Perceptron algorithm is an efficient algorithm for learning a linear separator in d−dimensional space, with

a mistake bound that depends on the margin of separation of the data.

1.3.1 General Idea

Given the training data

D =
{⟨

x(i), y(i)
⟩
, i = 1, ..., n

}
∈ (Rm × {0, 1})n

we want to know the exact value of y ∈ {0, 1}.

Figure 1.5: Perceptron Output

7

1.3 Perceptron Algorithm

General idea:

• If the perceptron correctly predicts (ŷ = y):

· Do nothing

• If the perceptron yields an incorrect prediction (ŷ ̸= y):

· If the prediction is 0 and truth is 1 (ŷ = 0|y = 1 ⇒ e = y − ŷ = 1), add feature vector

to weight vector.

· If the prediction is 1 and truth is 0 (ŷ = 1|y = 0 ⇒ e = y − ŷ = −1), subtract feature

vector from the weight vector.

Figure 1.6: Perceptron

Since we want the prediction to be either 0 or 1, we usually use binary function as the activation function in

perceptron.

1.3.2 Algorithm

Perceptron Algorithm:

• Initialize weights (including a bias term) to zero, e.g. W = [w, b] = 0m+1.

• Under each training epoch: Compute for each sample
⟨
x(i), y(i)

⟩
∈ D

· A prediction ŷ(i) = g(x(i)
T
W)

· Prediction error e(i) = y(i) − ŷ(i)

· Weighted update W = W + ηe(i)x(i)

8

1.4 ADAptive LInear NEuron (ADALINE)

1.3.3 Limitations

(1) Only provides a linear classifier boundary.

(2) Only allows for binary classifier between two classes.

(3) No convergence possible if classes are not linearly separable.

(4) Perceptron will yield multiple boundary/”optimal” solutions.

(5) Boundaries found may not perform equally well.

1.4 ADAptive LInear NEuron (ADALINE)

1.4.1 General Idea

Except the activation function in perceptron, we can add a threshold function.

In perceptron, we generate the estimation ŷ (after binary function) to help update weight {wi}mi=0. However, in

ADALINE, we minimize MSE z = xTW to update weight {wi}mi=0 before output estimation ŷ (before binary

function).

Before entering threshold (binary function), we want to minimize a mean- squared error (MSE) loss function to

estimate weights.

e.g. suppose g(x) = x, let z = xTW be the input of threshold, for each y,

W ∗ = argmin
W

L(z, y) = (y − z)2

∂L(z, y)

∂wi
= −2(y − z)

∂z

∂wi
= −2(y − z)xi

Figure 1.7: ADALINE

9

1.5 Logistic Regression (Binary-class Output)

1.4.2 Widrow-Hoff Delta Rule

(Gradient Descent Rule for ADALINE)

• Original:

W = W + η(y(j) − z)x(j)

• Unit-norm:

W = W + η(y(j) − z)
x(j)

∥x(j)∥

where ∥x∥ =
√

x21 + x22 + · · ·+ x2m

The Perceptron and ADALINE use variants of the delta rule!

(1) Perceptron: Output used in delta rule is ŷ = g(xTW); W = W + η(y(j) − ŷ(j))x(j)

(2) ADALINE: Output used to estimate weights is z = xTW . W = W + η(y(j) − z)x(j)

1.5 Logistic Regression (Binary-class Output)

1.5.1 Generative and Discriminative Classifiers

The most important difference between naive Bayes and logistic regression is that logistic regression is a dis-

criminative classifier while naive Bayes is a generative classifier.

Suppose we want to classify class A (dogs) and class B (cats) (More genearl form: assign a class c ∈ C to a

document d ∈ D):

(1) Generative model: A generative model would have the goal of understanding what dogs look like and

what cats look like. You might literally ask such a model to ‘generate’, i.e., draw, a dog.

e.g. naive Bayes: we do not directly compute the probability that the document d belongs to each class

c, P (c|d). We compute likelihood P (d|c) and prior probability P (c) to generate best estimation ĉ. (i.e.,

we want to know what should the distribution of a document d in class c be like.)

ĉ = argmax
c∈C

P (d|c)P (c)

(2) Discriminative model: A discriminative model, by contrast, is only trying to learn to distinguish the

classes (perhaps without learning much about them). That is we want to directly computing P (c|d).

10

1.5 Logistic Regression (Binary-class Output)

1.5.2 Sigmoid function

The goal of binary logistic regression is to train a classifier that can make a binary decision about the class of a

new input observation.

The input observation is x = [x1, ..., xm]T and the output y is either 1 or 0. Instead of using the optimal weights

of each feature xi and binary activation function (threshold: ŷ = 1 if z ≥ 0 and ŷ = 0 otherwise) to estimate

in Perceptron and ADALINE, we want to estimate the probability P (y = 1|x).

However, the weighted sum z = xTW =
∑m

i=1wixi + b ranges −∞ to ∞. We want to force the z to be a

legal probability, that is, to lie between 0 and 1.

The sigmoid function σ(z) = 1
1+e−z can be used as acitivation for this purpose, P (y = 1|x) = σ(xTW).

Since 1− σ(x) = σ(−x), P (y = 0|x) = σ(−xTW).

1.5.3 Cross-entropy Loss Function

We choose the parametersW that maximize the log probability of the true y labels in the training data given the

observations x. The conditional probability

p(y|x) =

 ŷ, y = 1

1− ŷ, y = 0
= ŷy(1− ŷ)1−y

To maximize the probability, we log both sides:

log p(y|x) = y log ŷ + (1− y) log(1− ŷ)

Then, we want the ŷ to maximize the probability (also the logarithm of the probability):

ŷ∗ = argmax
ŷ∈[0,1]

log p(y|x)

= argmin
ŷ∈[0,1]

− log p(y|x)

= argmin
ŷ∈[0,1]

−(y log ŷ + (1− y) log(1− ŷ))

The right hand side is exactly the cross-entropy loss function:

L(y, ŷ) = −(y log ŷ + (1− y) log(1− ŷ))

where ŷ(i) = σ(wTx(i) + b)

∂L(y(i), ŷ(i))

∂wj
=

(
σ(wTx(i) + b)− y(i)

)
x
(i)
j = (ŷ(i) − y(i))x

(i)
j

The risk (Binary Cross-Entropy Cost) of a weight W is

J(W) = − 1

n

n∑
i=1

(y(i) log ŷ(i) + (1− y(i)) log(1− ŷ(i)))

11

1.6 Softmax Regression (Multi-class Output)

∂J(w, b)

∂wj
=

1

n

n∑
i=1

(
σ(wTx(i) + b)− y(i)

)
x
(i)
j

1.5.4 Algorithm

• Initialize weights (including a bias term) to zero, e.g. W = [w, b] = 0m+1.

• Under each training epoch: Compute for each sample
⟨
x(i), y(i)

⟩
∈ D

· A prediction ŷ(i) = g(x(i)
T
W)

· Prediction error e(i) = y(i) − ŷ(i)

· Weighted update W = W + ηe(i)x(i) = W − η∇L(W)

1.6 Softmax Regression (Multi-class Output)

1.6.1 Multi-Class Classification and Multi-Label Classification

Definition 1.6

♣

Multi-Class Classification is a process for assigning each sample exactly one class. In this case, classes

are considered mutually exclusive (no intersection).

Figure 1.8: Multi-Class Classification

Definition 1.7

♣

Multi-Label Classification or annotation allows for each sample to have 1 or more classes assigned to it.

In this case, classes are mutually non-exclusive (one common element).

We can show some examples of activation layer and loss choice in different probelms.

12

1.6 Softmax Regression (Multi-class Output)

Figure 1.9: Multi-Label Classification

Figure 1.10: Examples of Activation Layer and Loss Choice

1.6.2 One-hot Encoding

Definition 1.8

♣

One-hot encoding is the process of assigning a single location within a vector to represent a given cate-

gory.

Figure 1.11: One-hot encoding

Examples:

1. z = [4]1×1 →
[
0 0 0 0 1

]
1×5

13

1.6 Softmax Regression (Multi-class Output)

2. y =
[
3 0 2

]
1×3

→

0 0 0 1

1 0 0 0

0 0 1 0

3×4

3. v =
[
5 0 4 4 3

]
1×5

→

0 0 0 0 0 1

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 1 0 0

5×6

Usefulness of Encodings

1. Close to a traditional design matrix for linear regression that uses a codified dummy variable structure.

e.g. FALSE (0) or TRUE (1)

2. Reduce the size of data stored by using numbers instead of strings.

3. Poor if there are too many unique values (e.g. text messages on a phone.)

1.6.3 Softmax function

Definition 1.9

♣

Softmax function or normalized exponential function converts between real valued numbers to values

between 0 and 1

Softmax: Sj(x⃗) =
exj∑n
i=1 e

xi
,

S(x⃗) =

[
ex1∑n
i=1 e

xi
,

ex2∑n
i=1 e

xi
, · · · , exn∑n

i=1 e
xi

]T
We can show the softmax function has the following properties:

(1) First-derivative:
∂Si(x⃗)

∂xi
= Si(x⃗)[1− Si(x⃗)];

∂Si(x⃗)

∂xj
= −Si(x⃗)Sj(x⃗)

(2) Stabilizing softmax:

Sj(x⃗+ c) =
exj+c∑n
i=1 e

xi+c
=

exj∑n
i=1 e

xi
= Sj(x⃗)

We can minusmaxi xi to avoid overflow in softmax function. (numerical issue) i.e., Sj(x⃗−(maxi xi)) =

Sj(x⃗)

14

1.7 Deep Feedforward Networks

1.6.4 Categorical Cross-entropy Loss Function

Definition 1.10

♣

Categorical Cross-entropy Loss is a way to quantify the difference between a ”true” values {yc}c∈C and

an estimated {ŷc}c∈C across C categories.

Note: y needs one-hot encoding firstly, ŷ are estimated probability.

L(y, ŷ) = −
∑
c∈C

(yc · log(ŷc))

Definition 1.11

♣

Categorical Cross-entropy Cost is a way of quantifying the cost over multiple points from different cate-

gories.

J(W) =
1

n

n∑
i=1

L(yi, ŷi) = − 1

n

n∑
i=1

∑
c∈C

(yi,c · log(ŷi,c))

1.7 Deep Feedforward Networks

1.7.1 Definition

In any neural network, a dense layer is a layer that is deeply connected with its preceding layer which means the

neurons of the layer are connected to every neuron of its preceding layer.

Definition 1.12

♣

Deep feedforward networks, feedforward neural networks, multilayer perceptrons (MLPs), or

dense neural networks form the foundations of deep learning models. Learning occurs in only

one direction: forward. There are no feedback connections in whichoutputs of the model are fed back

into itself. There are no cycles or loops present. Information must flow from the input layer, through one

or more hidden layers, before reaching the output.

A deep neural network contains Input Layer, Hidden Layer, and Output Layer.

1.7.2 Universal Approximation Theorem

Universal Approximation Theorem, in its lose form, states that a feed-forward network with a single hid-

den layer containing a finite number of neurons can approximate any continuous function. (Which is also

15

1.8 Mini-batch Optimization

Figure 1.12: Deep Neural Network

equivalent to having a nonpolynomial activation function)

Theorem 1.1 (Universal approximation theorem)

♡

Fix a continuous function σ : R → R (activation function) and positive integers d,D ∈ Z+. The function

σ is not a polynomial ⇔ for every continuous function f : Rd → RD (target function), every compact

subset K of Rd, and every ϵ > 0 there exists a continuous function fϵ : Rd → RD (the layer output) with

representation

fϵ = W2 ◦ σ ◦W1

where W2,W1 are composable affine maps and o denotes component-wise composition, such that the

approximation bound

sup
x∈K

∥f(x)− fϵ(x)∥ < ε

holds for any ϵ arbitrarily small (distance from f to fϵ can be infinitely small).

1.8 Mini-batch Optimization

1.8.1 Stochastic Gradient Descent (SGD) and Batch Gradient Descent (BGD)

Stochastic Gradient Descent (SGD)

1. Start with a random guess.

2. For n epochs:

1) Reorder data

2) Retrieve an observation i = 1, 2, ... one by one in reordered data:

(1) Compute gradient on single data point i: ∂Ji(W)
∂W

16

1.8 Mini-batch Optimization

Figure 1.13: Universal Approximation Theorem

(2) Update parameters: W = W − α∂Ji(W)
∂W

3. Output parameters

Note: ”On-line”/”Stochastic” Single Observation Updates

Batch Gradient Descent (BGD)

1. Start with a random guess.

2. For n epochs:

1) Compute gradients on all the data: ∂J(W)
∂W

2) Update parameters: W = W − α∂J(W)
∂W

3. Output parameters

Note: All data used in update

Figure 1.14: BGD and SGD

17

1.9 Weight Initialization

1.8.2 Mini-Batch Gradient Descent (MBGD)

We want a middle ground between SGD and BGD.

Mini-Batch Gradient Descent (MBGD)

1. Start with a random guess.

2. For n epochs:

1) Reorder data and retrieve a subet of reordered data with size b (batch size)

2) Compute gradient on subset: ∂J(W)
∂W

3) Update parameters: W = W − α∂J(W)
∂W

3. Output parameters

If b = n, the algorithm is exactly BGD; If b = 1, the algorithm is exactly SGD.

Figure 1.15: SGD and MBGD

Figure 1.16: Comparison of Approaches

1.9 Weight Initialization

1.9.1 Xavier Initialization

Normal distribution with a scale variance by weights. Used on layers where either TanH or Sigmoid is present.

18

1.9 Weight Initialization

Initialize weights for layer l with: W [l] = W [l]
√

1
n[l−1]

where n[l−1] is the number of weights in the last layer. Each weight is sampled by W
[l]
j,i ∼ N (0, 1)

1.9.2 He Activation

Weight initialization for ReLU -powered network.

Initialize weights for layer l with: W [l] = W [l]
√

2
n[l−1]

where n[l−1] is the number of weights in the last layer. Each weight is sampled by W
[l]
j,i ∼ N (0, 1)

19

Chapter 2 Adaptive Optimization

2.1 Exponentially Weighted Moving Averages

How can we get an average across time?

1. (Simple) (weighted) Moving Average ((S)MA):

x̄MA =
xm + xm−1 + · · ·+ xm−(n−1)

n
=

1

n

n−1∑
i=0

xm−i

2. Exponentially (weighted) Moving Averages (EMA):

EMAt =

 Y1, t = 1

β · Yt + (1− β) · EMAt−1, t > 1

EMA is quicker to react: focuses more on recent events; SMA is slower to react: focuses on long series events.

2.2 Adaptive Learning Rates

Adaptive Learning Rate is a change to the learning rate while training a model to reduce the training time and

improve output

2.2.1 Momentum

For a gradient descent with form:

θt+1 := θt − vt

where vt is the velocity which is amplified gradient speed.

1. SGD:

vt = α∇θJ(θt)

2. SGD + Momentum:

vt = ρvt−1 + α∇θJ(θt)

where ρ is the friction or momentum which dampens the amount of the previous gradient included.

Default: 0.9 for ∼ 10 gradients.

With momentum, the learning rate is decreased if gradient direction changes and increased if gradient direction

stays on same path.

2.2 Adaptive Learning Rates

2.2.2 Root Mean Square Propagation (RMSProp)

Decrease learning rate by EMA using squared gradient.

g0 = 0 (Initial ”gain”)

gt = αgt−1 + (1− α)∇θJ(θt)
2 (MA over gradient squared)

θt : = θt−1 −
ε

√
gt + 1× 10−5

vt (1× 10−5 is used to avoid division by 0)

2.2.3 Adaptive Moment Estimation (ADAM)

Merges the momentum and RMSProp paradigms.

Novelty is a bias correction of 1st/2nd moments.

Focus is on learning rate annealing (start fast, decrease).

(1) Initial: v0 = 0, gt = 0.

(2) Momentum-variant: vt = β1vt−1 + (1− β1)∇θJ(θt)

(3) RMSProp: gt = β2gt−1 + (1− β2)∇θJ(θt)
2

(4) Bias Correction: v′t = vt
1−βt

1
, g′t =

gt
1−βt

2
(where βt

i is the tth power of βi)

(5) RMSProp + Momentum: θt := θt−1 − ε√
g′t+1×10−5

v′t

Pytorch Code

torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08,

weight_decay=0, amsgrad=False, *, foreach=None,

maximize=False, capturable=False,

differentiable=False, fused=False)

Pseudocode

21

2.2 Adaptive Learning Rates

Figure 2.1: Pseudocode of ADAM

22

Chapter 3 Convolutional Neural Network (CNN)

3.1 Convolution and Cross-correlation

Cross-correlation and convolution are both operations applied to images. Cross-correlation means sliding a

kernel (filter) across an image. Convolution means sliding a flipped kernel across an image. Most convolutional

neural networks in machine learning libraries are actually implemented using cross-correlation, but it

doesn’t change the results in practice because if convolution were used instead, the same weight values would

be learned in a flipped orientation.

We have some source pixels, we use a convolution kernel (filter) to process the source pixels. The output is

destination pixels.

Given the source pixels {Image(x, y) : x ∈ [−dX , dX], y ∈ [−dY , dY]} and convolution kernel (filter)

{K(i, j) : i, j ∈ [−d, d]}. nX = 2dX + 1, nY = 2dY + 1 are image dimension, f = 2d + 1 is the filter

dimension. We can generate destination pixels in (nX − f + 1)× (nY − f + 1) = (nX − 2d)× (nY − 2d)

For x ∈ [d+ 1, nX − d], y ∈ [d+ 1, nY − d]

1. Convolution:

CONV(x, y) =
d∑

i=−d

d∑
j=−d

Image(x− i, y − j)K(i, j)

2. Cross-Correlation:

CrossCorrelation(x, y) =
d∑

i=−d

d∑
j=−d

Image(x+ i, y + j)K(i, j)

Figure 3.1: Convolution Used in CNN (actually cross-correlation)

3.2 Padding (cover the border)

Kernel

1. Edge Detection: vertical

1 0 −1

1 0 −1

1 0 −1

; horizontal

1 1 1

0 0 0

−1 −1 −1

2. Blur Pixel: 1
9

1 1 1

1 1 1

1 1 1

; Sharpen:

0 0 0

0 2 0

0 0 0

; Identity:

0 0 0

0 1 0

0 0 0

; Shift Pixel:

0 0 0

1 0 0

0 0 0

3.2 Padding (cover the border)

Definition 3.1

♣
Padding refers to the extension of the input image by adding a border of pixels the image.

Figure 3.2: Padding: p = 1

For image n× n with filter f × f and padding p, the output has dimension

(n+ 2p− f + 1)× (n+ 2p− f + 1)

In order for the output dimensions to be equivalent to the image dimension the padding value must be p = f−1
2

3.3 Stride

Definition 3.2

♣Stride refers to the sliding distance of the filter/kernel over spatial locations.

The default stride or strides in two dimensions is (1,1) for the height and the width movement.

24

3.4 Other Layer Types

For example, the stride can be changed to (2,2). This has the effect of moving the filter two pixels right for each

horizontal movement of the filter and two pixels down for each vertical movement of the filter when creating the

feature map.

The new dimension of the output would be⌊
nX + 2p− f

s
+ 1

⌋
×
⌊
nY + 2p− f

s
+ 1

⌋

3.4 Other Layer Types

3.4.1 Pooling

Definition 3.3

♣

Pooling refers to the process of downsampling features by aggregating values at places in the feature

map.

Figure 3.3: Example: maxpool

3.4.2 Unpooling

Definition 3.4

♣

Unpooling refers to the process of upsampling features by recreating the dimensions of feature map pooled

and placing the pooled values into their original location.

Figure 3.4: Example: maxpool+unpool

3.5 3D Convolution

Note the default filter has dimension f × f × n′ (n′ is the number of filters in the previous layer)

25

3.5 3D Convolution

Figure 3.5: 3D Convolution

Parameters Computing:

1. CONV layer: (shape of width of the filter * shape of height of the filter * number of filters in the previous

layer+1)*number of filters

(added 1 because of the bias term for each filter.)

(5× 5× 3 + 1)× 8 = 608

2. Fully Connected Layer (FC): (current layer neurons number * previous layer neurons number)+1* cur-

rent layer neurons number

120× 400 + 1× 120 = 48120

26

Chapter 4 Generative model

4.1 Autoencoders

Definition: Self-supervised learning (SSL) is a machine learning process where the model trains itself to learn

one part of the input from another part of the input. It is a technique similar in scope to how humans learn to

classify objects. SSL relies on unlabeled data to solve a task by splitting the task into at least two halves:

1. A decomposition into pseudo-labels by withholding some training data (self-supervised task/pretext task);

and,

2. Reconstruction using either supervised or unsupervised learning.

For example, in natural language processing, if we have a few words, using self-supervised learning we can

complete the rest of the sentence. Similarly, in a video, we can predict past or future frames based on available

video data.

4.1.1 Basics

Definition 4.1

♣

Autoencoders are designed to take the input data, say x, and, then, predict the very same input x! In

other words, the network trains itself to imitate its input so that its output is the same.

Figure 4.1: Autoencoders

4.1 Autoencoders

Undercomplete autoencoders are defined as having a bottleneck layer dimension that is less than that of the

input. e.g.

dim(z) < dim(x)

The lower dimention of bottleneck (hidden unit) avoids overfitting.

If the dimension is equal, the x will be completely transformed into x′ which is often the same as the model

learns nothing and may also be overfitted. Therefore, some other conditions are usually added to make the model

only approximate its input, so that the model can really learn the hidden vector expression of the input samples

and prevent overfitting.

4.1.2 PCA and Autoencoders

Principal Component Analysis (PCA) is using orthogonal basis to reduce dimensionality.

Figure 4.2: Principal Component Analysis (PCA)

Consider a single hidden layer linear autoencoder network with linear activations and MSE loss:

z⃗ = W [1]x⃗+ b⃗[1]

x⃗′ = W [2]z⃗ + b⃗[2]

L(x⃗, x⃗′) = ∥x⃗− x⃗′∥22
If we have the dim(m) < dim(n), then the problem will be a PCA without an orthogonality restriction on the

weights.

Why bother with autoencoders if PCA exists? Dimensional Reductions (Addressing curse of dimensionality)

- Rarely are we seeking to use an auto encoder for solely a dimension reduction.

- In such cases, we probably would be better off with:

28

4.1 Autoencoders

• Principal Component Analysis (PCA): If linear and desire global structure under a deterministic algorithm.

• T-distributed stochastic neighbour embedding (t-SNE): If non-linear and desire local structure under a

randomized algorithm with dense structures.

• Uniform Manifold Approximation and Projection (UMAP): If non-linear and desire local structure under

a randomized algorithm with sparse structures.

4.1.3 Transposed Convolutions (upscale method)

Definition: Transposed Convolutions, uncov, or fractionally striped convolution is a technique to upscale the

feature map so that it matches in dimension with the input feature map.

(Sometimes erroneously called ”deconvolution”.)

Figure 4.3: Transposed Convolutions

Comparison between Convolution and Transposed Convolution

Transposed Convolution with Stride

For a image n× n with filter f × f , padding p and stride s, the dimension of the output is

(s(n− 1) + f − 2p)× (s(n− 1) + f − 2p)

29

4.1 Autoencoders

Figure 4.4: Comparison

Figure 4.5: Transposed Convolution with Stride

30

	1 Learning Basics
	1.1 Parameters and Hyperparameters
	1.2 Neural Network: Back Propagation Algorithm
	1.2.1 Activations
	1.2.2 Multilayer Neural Network
	1.2.3 A Simple Example of Back Propagation Algorithm
	1.2.4 Back Propagation Algorithm
	1.2.5 Other Methods

	1.3 Perceptron Algorithm
	1.3.1 General Idea
	1.3.2 Algorithm
	1.3.3 Limitations

	1.4 ADAptive LInear NEuron (ADALINE)
	1.4.1 General Idea
	1.4.2 Widrow-Hoff Delta Rule

	1.5 Logistic Regression (Binary-class Output)
	1.5.1 Generative and Discriminative Classifiers
	1.5.2 Sigmoid function
	1.5.3 Cross-entropy Loss Function
	1.5.4 Algorithm

	1.6 Softmax Regression (Multi-class Output)
	1.6.1 Multi-Class Classification and Multi-Label Classification
	1.6.2 One-hot Encoding
	1.6.3 Softmax function
	1.6.4 Categorical Cross-entropy Loss Function

	1.7 Deep Feedforward Networks
	1.7.1 Definition
	1.7.2 Universal Approximation Theorem

	1.8 Mini-batch Optimization
	1.8.1 Stochastic Gradient Descent (SGD) and Batch Gradient Descent (BGD)
	1.8.2 Mini-Batch Gradient Descent (MBGD)

	1.9 Weight Initialization
	1.9.1 Xavier Initialization
	1.9.2 He Activation

	2 Adaptive Optimization
	2.1 Exponentially Weighted Moving Averages
	2.2 Adaptive Learning Rates
	2.2.1 Momentum
	2.2.2 Root Mean Square Propagation (RMSProp)
	2.2.3 Adaptive Moment Estimation (ADAM)

	3 Convolutional Neural Network (CNN)
	3.1 Convolution and Cross-correlation
	3.2 Padding (cover the border)
	3.3 Stride
	3.4 Other Layer Types
	3.4.1 Pooling
	3.4.2 Unpooling

	3.5 3D Convolution

	4 Generative model
	4.1 Autoencoders
	4.1.1 Basics
	4.1.2 PCA and Autoencoders
	4.1.3 Transposed Convolutions (upscale method)

